Declarative DSL for multi-agent workflows. Define complex pipelines with YAML simplicity and Python power. Native V0DN3T MCP integration.
name: analyze_opportunity
agents:
researcher:
model: gpt-4o-mini
instruction: "Search data"
output: market_data
analyst:
model: claude-3-haiku
depends_on: researcher
instruction: "Analyze"
output: report
on_error:
notify: "https://..."
fallback: researcher
Powerful Orchestration
Build sophisticated AI agent workflows with these powerful features
Define workflows in simple, portable YAML. Perfect for version control and team collaboration.
Builder pattern with method chaining for programmatic workflow construction.
Detect syntactic and semantic errors before execution. Cycle detection included.
Configurable retries with conditions and feedback. Handle failures gracefully.
Native V0DN3T MCP Hub integration. Access web search, blockchain tools, and more.
Both YAML and Python compile to the same Intermediate Representation.
Simple & Intuitive
name: analyze_opportunity agents: researcher: model: gpt-4o-mini tools: [web_search, fetch_url] instruction: "Search for data about {input.topic}" output: market_data analyst: model: claude-3-haiku depends_on: researcher instruction: "Analyze {market_data}" output: report retry: max: 2 condition: "{decision.approved} == false" reviewer: model: gpt-4o depends_on: analyst instruction: "Approve or reject {report}" output: decision on_error: notify: "https://hooks.takizen.io/alerts" fallback: researcher
from agentflow import WorkflowBuilder, RetryPolicy wf = ( WorkflowBuilder("analyze_opportunity") .agent("researcher", model="gpt-4o-mini", tools=["web_search", "fetch_url"], instruction="Search data", output="market_data") .agent("analyst", model="claude-3-haiku", depends_on="researcher", instruction="Analyze {market_data}", output="report", retry=RetryPolicy( max=2, condition="{decision.approved} == false")) .agent("reviewer", model="gpt-4o", depends_on="analyst", instruction="Review {report}", output="decision") .on_error( notify="https://hooks.takizen.io/alerts", fallback="researcher") .build() )
V0DN3T MCP Integration
AgentFlow workflows can natively access V0DN3T MCP Hub tools
web_search
Tavily web search
deep_research
Perplexity research
auto_fix
Code fixing
podman_ps
Container mgmt
d1_query
Database queries
blockchain_status
Web3 operations
code_interpreter
E2B execution
sequential_thinking
Structured reasoning
Start building sophisticated multi-agent workflows today with AgentFlow.
View on GitHub